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Abstract. A generalized Dick model with a potential term is discussed. The solution originating from a
static, point-like, color source is found to have a confining part. A comparison with a wide spectrum of
phenomenological quark–antiquark potentials is presented.

1 The model

It is believed that the non-relativistic potential model can
quite well describe the physics of heavy quarks. It is pos-
sible to obtain the whole spectrum of the masses of the
quark and antiquark pairs in the quarkonium system, us-
ing only the potential U(r). Here r denotes the distance
between the quarks. Unfortunately, there are many dif-
ferent forms of the potential in the literature (see e.g. [1,
2]); nevertheless, up to now the final form has not been
fixed. However, it was shown [3] that the most probable
potential, in the bottomonia region, is

UMZ(r) = C1

(√
r − C2

r

)
, (1)

where C1 � 0.71 GeV1/2 and C2 � 0.46 GeV3/2. In the
present paper we construct a Lorentz invariant, effective
action which provides this potential.

The confining part of the potential, i.e. the part which
is divergent in spatial infinity, can be obtained from the
SU(2) Yang-Mills theory coupled to the scalar field [4–6].
In particular, in the generalized Dick model [7], there is a
sector where the confining potential has the same form as
that given by (1). The main defect of the generalized Dick
model (from the confinement point of view) is the simulta-
neous existence of finite energy solutions of the Coulomb
problem. In order to preserve only the confining sector one
has to add an additional potential term for the scalar field.
This potential should have a unique minimum at φ = 0
[7]. On the other hand, the Motyka–Zalewski potential
(1) contains also the well-known Coulomb part. Because
of this, our effective action should, in the limit of a strong
scalar field, reduce to the simple YM theory. The effective
action discussed below can also be regarded as a version
of the SU(2) color dielectric model with a special choice
of the color dielectric function and scalar potential (see
e.g. [8]).
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Let us consider a model which satisfies the conditions
mentioned above:
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∫

d4x


−1

4

(
φ
Λ

)8δ

1 +
(

φ
Λ

)8δ
F a

µνF aµν +
1
2
∂µφ∂µφ

− αφ4
(

φ

Λ

)8δ


 , (2)

where δ > 0, Λ is a dimensional constant, whereas α is
a dimensionless one, and F a

µν is defined in the standard
manner. We would like to stress that the potential for the
scalar field has been chosen to give an analytic solution of
the Coulomb problem.

The field equations for (2) have the following form:
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(4)
where jaµ is the external color current.

2 Solutions

Let us consider a static, point-like color source:

jaµ = 4πqδ(r)δa3δµ0, (5)

Without loss of generality the source can be taken to be
Abelian. One can also consider a non-Abelian source, for
example: jaµ = 4πqδ(r)Caδµ0, where Ca is the expecta-
tion value of the su(Nc) generator for a normalized spinor



146 M. Ślusarczyk, A. Wereszczyński: Quark–antiquark potentials from a scalar field in SU(2) YM

in the color space [4]. However, on account of the fact that
the results for these two cases are very similar we will an-
alyze only the Abelian source. The pertinent equations of
motion read 
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′
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where Ea = Eδ3ar̂ is the electric field defined in the stan-
dard way. These equations possess the following solutions:
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, (8)
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where
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.

This number is positive for sufficiently large values of α.
The energy of the solutions is divergent, not only in the
small r limit, but also in the long range limit, r → ∞. In
this sense, confinement emerges.

For δ > 1/4 the color electric potential has the form

V (r) = −q

r
+

4δ + 1
4δ − 1

A−8δqΛ4δ/(4δ+1) ·r(4δ−1)/(4δ+1). (10)

Let us assume that the color source is a heavy quark.
Therefore, the potential seen by an (anti)quark has the
following form:

U(r) = −q2

r
+

4δ + 1
4δ − 1

A−8δq2Λ4δ/(4δ+1) · r(4δ−1)/(4δ+1).

(11)
A similar calculation can be done for the case δ = 1/4.
The result is

U(r) = −q2

r
+ ΛA−8δq2 ln Λr. (12)

For δ < 1/4 the potential does not show a confinement-like
behavior.

There are three general conditions which must be sat-
isfied by a static potential. Namely, it cannot rise faster
than linearly as a function of the distance r for r → ∞ [9],
it has to be a monotonically increasing function of r, and
U ′′(r) ≤ 0 [10]. Unfortunately, our potential (11) satisfies
these conditions for all δ > 1/4 and we cannot use them
to constrain the parameter δ.

The potential term in (2) not only excludes single
charge states from the physical sector of the theory (i.e.

there are no finite energy solutions of the Coulomb prob-
lem), but it also removes magnetic monopoles. Let us
rewrite the equations of motion using the well-known mag-
netic monopole Ansatz for the gauge field:

Aa
i = εaik

xk

r2 (g(r) − 1), Aa
0 = 0, (13)

where g(r) is a function of the radial coordinate only. We
get
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The above set of equations possesses the unique but trivial
finite energy solution φ = 0. The finite energy monopoles
observed in [7] do not appear due to the potential term.

3 Conclusions

We can compare the quark–antiquark potential derived
from model (2) with the phenomenological confining
Motyka–Zalewski potential. It is immediately seen that
they become identical if we set δ = 3/4.

However, one can fit the model to another phenomeno-
logical potential, which has been successfully applied to
calculate quarkonium energy levels, namely to the Cornell
potential UC(r) = −(a/r)+br, where a, b are non-negative
constants [1]. Our potential has the same form in the limit
δ → ∞, but it is not feasible to implement this limit on
the lagrangian level. So, strictly speaking, our model does
not supply the linear divergence of the confining poten-
tial, but this can be achieved with arbitrary accuracy by
taking sufficiently large values of δ. That is the main dif-
ference between the Dick model and the model presented
here.

Contrary to the model considered in [7], there exists
no solution which is non-singular in spatial infinity. It
was gained by adding the potential term for the scalar
field. There are no magnetic monopoles, either. It is worth
stressing that in the model confinement and disappearance
of the magnetic monopoles occur simultaneously.

There are, at least, two directions in which the present
work might be continued. Firstly, theoretical restrictions
for the parameter δ as well as for the particular form of the
potential term in the action (2) are needed. Due to the fact
that our action belongs to a wide family of color dielectric
actions we believe that these problems can be solved using
the lattice color dielectric methods. In fact, much work
was done in the past to derive the lattice color dielectric
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model from the lattice QCD (see e.g. [11–13]). For example
in [12] the effective scalar potential for δ = 1/2 has been
computed. One can also use the detailed, lattice study of
the flux-tube profile, which was done in the last few years
(see e.g. [14–16]) and compare it with the predictions of
our model to fix the δ parameter.

Secondly, because finite energy solutions of the
Coulomb problem appear for potentials which have a
unique minimum for φ 	= 0, the model can be used to
study the confinement–deconfinement phase transition.
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